REACTIVE HAZARDS ASSESSMENT (RHA) PRACTICES

An Industry Benchmarking Survey

- Ashok Chakrabarti Shell Global Solutions US, Inc.
- Clark Shepard ExxonMobil Research and Engineering
- Scott Tipler The Dow Chemical Company
- ► Ron Chittim American Petroleum Institute
- Lara Swett American Fuel & Petrochemical Manufacturers

4/25/2017

1

Reactive Hazards Assessment Practices - Background

- Benchmarking study to understand details of Reactive Hazard Assessment (RHA) practices followed in industry
- Survey prepared by a steering team consisting of members from industry, API, and AFPM
- Survey conducted by AFPM
- Results compiled by the steering team
- Recommend to review the responses in order to identify opportunities for your organization

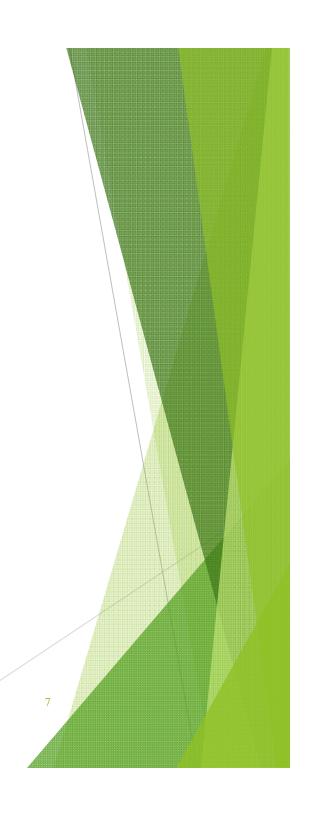
Reactive Hazards Assessment Practices - Respondents

- > 24 Respondents
 - 17 chemical companies and 7 oil companies
 - 15 companies have >1000 employees
 - Company site distribution
 - o 10 companies have >15 sites,
 - o 7 have 6-15 sites,
 - o 3 have 2-5 sites,
 - o 4 have 1 site

Reactive Hazards Assessment Practices - Summary

- Most companies have a formal RHA process that is included in their PHA
- Most companies include laboratories and pilot plant testing in their RHA methodology
- Hazards are considered for entire operation including storage areas, waste tanks, & utilities
- Many companies use the results of screening tests to determine the need for further testing
- Most companies use a mix of testing and modeling to understand the reactive hazards
 - The sequence of testing and the criteria for modeling varies

Reactive Hazards Assessment Practices - Summary, cont.


- Companies are conscious of subtle changes in the chemistry as they change sources of chemicals or catalysts
- Most companies conduct screening or testing for incompatibility, many utilize NOAA CRW
- Risk mitigation measures are in place to address risk of reactive hazards
 - Instrumented interlocks and emergency relief are the most common mitigations
 - Insulation and deluge systems are widely used to mitigate external fire scenario
 - Checklists/procedures, dedicated equipment, and certificate or analysis & positive identification are commonly used to mitigate contamination
 - Depressurizing is used for "hot spot" scenarios

Reactive Hazards Assessment Practices - Summary, cont.

- White paper is posted on the DIERS website
 http://www.iomosaic.com/diersweb/communications.aspx
- Recommend to review to identify opportunities for your organization - Especially the detailed comments

Reactive Hazards Assessment Practices

Supporting Slides

Reactive Hazards Assessment Practices - Profile and Program

> RHA Program

- 18 have formal RHA program
- 22 include RHA in PHA

> RHA Trigger Criteria

- 3 for new batch
- 7 for new lot
- 12 for new supplier
- 18 include pilot plant and/or laboratories

Potential for Missed Reactivity

- 7 use intensive testing
- 5 use incident history
- 4 use MSDS

Modeling

- 7 only use testing
- 13 use both testing and modeling modeling may be limited to relief design
- Various commercial and home-grown software
- 18 use transient simulations
 - None appear to simulate hotspots

> Testing Hierarchy

Screening followed by adiabatic testing

> Testing Regime/Extent Decision

Experts Decide	3
PHA	2
Literature	1
scale &/or energy	7
Protocol/Standard list of test	3
Screening to adiabatic	5
Duration of storage	1
Gas generation	1
ΔH and ΔG calculations	1

Available Test Methods

DSC	9
Isothermal DSC	1
DTA	2
Isothermal DTA	2
Scanning - Other	9
Micro-calorimetry	2
Adiabatic - High PHI	10
Adiabatic - Low PHI	12
Pilot Plant	2
Heat flow calorimetry	11
Dust	2
Minimum Ignition Energy	2
Flammable range	4
Scaled Venting	1
UN-10 liter	1
TGA	2
Shock Sensitivity	3
Auto Ignition Temperature	1

4/25/2017 11

- Procedure for Peer Review
 - Typically one or two level review
- > Training for Data Interpretation
 - 3 no program
 - 4 on the job training
 - 2 external training

> Energy or Rate Based Criteria

- 100, 200 and 300 J/g by 4
- Yes by 3
- No by 4

> Temperature Range

- Fixed upper limit 300, 400, 450, 500 C
- Operating +50 or 100 C
 - Archival
- 17 mentioned various forms of archiving
 - Mostly electronic or share point

Reactive Hazards Assessment Practices - Incompatibility

- > Testing for Incompatibility
 - 17 complete literature search
 - 17 consult with chemists
- > 12 use NOAA CRW
- Additional Material for Incompatibility
 - Some consider "non-process" chemicals

Materials of Construction	6
Gasket Materials	5
Lubricants	5
Air and Nitrogen Atmospheres	6
Water	7
Utilities	7
Absorbents	5

Reactive Hazards Assessment Practices - Incompatibility

- > Temperature Range for Incompatibility
 - Question may have been misunderstood
 - Same answers as temperature range for testing
- Screening for Atomic Grouping
 - 13 Yes, 4 No
- Most (13) Incompatibility Charts are for Units, 3 for Site

Reactive Hazards Assessment Practices - Incompatibility, cor

- > Types of Test for Incompatibility
 - Screening or mixing
- > Number of Tests for 10 x 10 matrix
 - **5**, 5, 25
- Number of Tests for Kinetics
 - 7 responses
 - 1 for simple, 3-5 for complex
 - Most use the "worst" test data

Reactive Hazards Assessment Practices - Risk Mitigation

Pooling of Reactants

- Relief
- SIS
- Monitor agitation
- Interlock for low temperature
- Inherent safety
- Some appear to have answered for "Pool Fire"
 - Deluge
 - Evacuation
 - Drainage

Reactive Hazards Assessment Practices - Risk Mitigation, con

> Heat Imbalance

- Relief
- SIS
- BPCS
- Robust temperature monitoring
- Flow limiting, including restrictive orifices
- Trips, Alarms

Reactive Hazards Assessment Practices - Risk Mitigation, con

> Fire

- Deluge
- Evacuation
- Drainage
- Fire brigade
- Relief
- Insulation
- Few appear to have answered for internal fire (deflagration)
 - Nitrogen blanketing
 - Oxygen monitoring
 - Relief

Reactive Hazards Assessment Practices - Risk Mitigation, con

Mechanical Overheating

- Relief
- SIS
- Motor surface temperature
- Interlocks
- Trips high temperature or high pressure

> Contamination

- Unloading checklists and procedures
- Dedicated unloading equipment
- Certificate of Analysis, Positive identification
- Relief

Reactive Hazards Assessment Practices - Risk mitigation

- Hot Spots in Catalyst Bed
 - Question may have been misunderstood
 - Many answers were similar to mechanical overheating
 - Depressurization
 - Multiple thermocouple and SIS
 - Increase cooling, remove heat sources, stop hydrocarbon feed